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A theoretical model shows that the silver ion distribution
observed within the iodide tetrahedra of [(CH,),N(CH,CH,),
O]JAg.; is consistent with their disorder being a cooperative
effect. The results indicate that the occurrence of silver ions in
neighboring tetrahedra is thus eliminated, and the number of
second and third neighbor Coulomb interactions is reduced as far
as possible, consistent with a minimum Helmholtz energy for the
system. The relative permittivity experienced by the silver ions is
calculated to be about 50; the resulting low Coulomb interaction
between cations in iodide matrices should facilitate their flow.
However, in the title compound a bottleneck will occur in the flow
of silver ions between adjacent iodide icosahedra unless some are
allowed to temporarily occupy higher energy sites and arrange-
ments, and this is the probable cause of the abnormally high
activation energy for electrical conduction observed in this com-
pound. © 1998 Academic Press

INTRODUCTION

This paper continues a previous study (1, 2) of the poten-
tial usefulness of graph theory, commonly applied in chem-
istry only to molecules, to problems in solid state chemistry
involving extended systems. In particular, it applies graph
matrix and related methods to treat the statistical mechan-
ics of the disordered distribution of silver ions in the one-
dimensional ionic conductor N,N-dimethylmorpholinium
pentaiodotetraargentate (I), [(CH3),N(CH,CH,),O]Ag,Is.

The crystal structure of the title compound was deter-
mined by Xie and Geller (3), and from the structure deter-
mination they were able to deduce that the observed
electrical conductivity is due to the silver ions, which are
restricted to moving in channels that lie within parallel
columns formed by the iodide tetrahedra. These columns
were shown to contain 23 such iodide tetrahedra per repeat
unit, each of which was assumed to contain a potential silver
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ion site. In fact, the sum of the various partial occupancies
for these sites found in the crystal structure determination
came close to the 8 silver ions per repeat unit required by the
stoichiometry of the compound. However, Xie and Geller’s
study left two major questions open: the reasons behind the
unusual disordered arrangement of silver ions within the
tetrahedral sites and the cause the temperature dependence
of the conductivity, interpreted by Xie and Geller as an
abnormally high activation energy compared to other silver
iodide derived ionic conductors.

GEOMETRIC DESCRIPTION OF THE STRUCTURE

Regular icosahedra, having 5-fold axes, cannot be tes-
selated to fill space. However, they may share faces to form
arrangements of rods, nets, or even three-dimensional net-
works, provided the remaining space is taken up in other
ways. In this particular compound, the iodide ions from
rods or columns of face-sharing icosahedra and the remain-
ing space is occupied by the organic cations.

If, as here, the icosahedron consists of a central atom and
its 12 neighbors, it can be considered to be built up from 20
individual tetrahedra. For example, for each tetrahedron
that makes up a regular icosahedron, the three edges that
radiate from the central atom have relative length 1, while
the three edges surrounding the corresponding icosahedron
face have length 1.087. Similarly there are three interfacial
angles which are constrained to be 72°, through the first set
of edges being co-incident with the 5-fold axes, while the
other three interfacial angles are 69.10°. (In a regular tetra-
hedron all interfacial angles are 70.53°.) In other words,
compared to a regular tetrahedron, the tetrahedra con-
tained in a regular icosahedron are compressed only slightly
along one 3-fold axis. In this study we are concerned with
the connectivity of the Ag™ sites, those being the centroids
of these tetrahedra. These sites form a dodecahedron, the
face dual of the icosahedron, just as the centroids of the
icosahedron’s faces do on a slightly larger scale. When we
then link the icosahedra together, not only do we open
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FIG. 1. Two of the face-sharing icosahedra (i), with the shared faces
shaded, and the corresponding linked dodecahedra (ii). (a) (i) One of the
tetrahedra forming the icosahedron (heavy lines), with the external face
(shared by the next icosahedron) shaded. (ii) The corresponding tetrahedral
arrangement of links to neighboring sites within the dodecahedron (heavy
lines) and to the next icosahedron (grey line). (b) (i) The three tetrahedra of
the collar (heavy lines), joined by the neck face (shaded). (ii) The corres-
ponding collar (heavy lines) and neck (grey) links between the dodecahedra.

a direct link, the throat between the two tetrahedra now
sharing the common face, but we also create a collar, con-
sisting of three additional tetrahedra, around the link, which
provides indirect paths from one icosahedron to the next. As
a result the repeat unit has 23 possible silver ion sites in
total. This relationship between the iodide icosahedron and
the dodecahedron of silver ion sites is shown in Fig. 1.

ANALYSIS OF THE SILVER ION DISTRIBUTION

As indicated in the Introduction, it is convenient to intro-
duce some elements of graph theory in modeling this sys-
tem; the necessary concepts are discussed in the book by
Trinajstic (4). In particular, graph properties will be ex-
pressed whenever possible in matrix notation, as this not
only is compact, but also simplifies the computer program-
ming involved.

The polyhedron of interest in this study is the dodecahed-
ron; it has 12 pentagonal faces, 20 vertices, corresponding to
the tetrahedral sites, and 30 edges, which correspond here to
the links between nearest neighbor silver ion sites. When the
connections between the neighboring icosahedra are added,
this becomes 23 sites and 37 links between them. We wish to
approximate the complete arrangement of silver ions in the
crystal (or in the independent individual columns) by repeti-
tions of the various arrangements of 8 silver ions among the
23 sites possible in this repeat unit. This approach in graph
theory is analogous to using a periodic boundary condition
where continuous functions are involved; it was used pre-

viously with success in bond resonance calculations (2).
However, it relies on the assumption that no significant
error in the relative probabilities arises from the fitting
together at the joins of the individual pieces of the pattern,
and consequently the distribution of these pieces (here the
8 ion arrangements over 23 sites) is adequately representa-
tive of the overall distribution. This requirement is ad-
dressed in the Appendix. The process indicated generates
the finite graph shown in Fig. 2; it combines the 20 vertices
and 30 edges of the symmetric planar graph of a pentagonal
dodecahedron with 3 additional vertices and 7 additional
edges, which arise from the face-sharing of adjacent
icosahedra.

Associated with this graph are several graph properties
significant to our discussion:

(1) It is not planar; this refers to the topology of the
overall graph. The graph of any polyhedron is planar, since
the polyhedron can be inscribed on the surface of a sphere
and subsequently deformed to the planar Schlegel projec-
tion, but the linking of opposite faces of the icosahedron
produces a graph which cannot be inscribed on a plane
without crossovers.

(2) It has radius 3; no vertex is at a graph distance
greater than 3 from any one of the vertices marked A or B in
Fig. 2. However, the other vertex types have some other
vertices at graph distance 4, suggesting that the A and
B vertices are in this sense more “central” to the graph than
the other types.

(3) It has diameter 4; the shortest path between any two
vertices of the graph is never more than 4. This is despite the
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FIG. 2. The 23-vertex graph with the vertices labeled by type and
number. The light lines are the 20 edges of the dodecahedral graph, and the
heavy lines the additional linking edges. The four cuts discussed in the
Appendix are marked =.
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radius being 3; what this means is that, inter alia, from each
C vertex at a graph distance 3 from a particular A vertex,
there is a shorter path to any third vertex of the graph than
the path that passes through the A vertex. As a specific
example, there are two paths of lengths 3 between A vertex
number 4 and C vertex number 12, viz.4 -5 —> 11 — 12 and
4 -9 — 13 - 12. Similarly, from vertex 4 to C vertex num-
ber 18 we have 4 >20—->19—-18 and 4 ->9 - 10— 18.
However, between vertices 12 and 18 the graph distance is 4,
there being in fact three such paths (12 —->7 -8 - 17 — 18,
12-513-520-19-18, and 12-11-55-10-18).
None of these paths passes through vertex 4. This property
affects the range of graph distances considered in the calcu-
lation and is largely a consequence of (1) above.

It should be noted that the independent length 3 paths
described in the previous paragraph lead from the A vertex
to C vertices that are in reality in different icosahedra and
therefore represent distinct Coulomb interactions. However,
the length 4 paths between the C vertices all lie within one
icosahedron, and the interaction should thus only be
counted only once. In fact this single interaction applies to
all pairs of vertices at graph distance 4, irrespective of the
number of paths available. (This distinction is reflected in
the method of counting used in Table 3.)

Now the distribution found for the 8§ silver ions over the
23 sites available is extremely unusual, with vertex occu-
pancies O ranging from 95% down to 3%, or possibly even
less. There is no grouping of the observed values around
their mean (8/23 or 0.348); in fact the large gap between the
8 largest, all above 0.55, and the next group of 5, at around
0.28, led Xie and Geller to consider that the disorder
might be a simple hopping of silver ions off their 8 ground
state positions to neighboring tetrahedral sites. However,
this interpretation, unless it includes correlated motion
of the silver ions, will lead to nearest neighbor silver
ion-silver ion interactions and hence a sharp increase in the
energy of the system, particularly if we assume that, at that
range, the screening of the charges by intermediate ions is
substantially reduced, and the bulk relative permittivity
does not apply.

We first examine whether it is possible with the observed
distribution to avoid such nearest neighbor interactions. We
can define an edge function, the occupancy sum, O; + O;,
where i and j are vertices sharing a common edge. This
function should have a range 0 to 2 and a mean, if random,
of 16/23 = 0.696. Figure 3 shows this function as predicted
from the observed occupancies on a random basis, along
with the distribution of this edge property actually ob-
served. Its maximum value is clearly 1 rather than 2. That is
not in itself enough to prove that no nearest neighbor
interactions are present, but it does show it to be possible,
provided there exists a combination of suitable arrange-
ments of the silver ions sufficient to explain the observed
occupancies.

Relative Frequency

Occupancy Sum

FIG. 3. The distribution of the vertex occupancy sum function. Solid
line, observed; dashed line, predicted on a random basis.

Perhaps more intriguing is the mean observed for the
function, at 0.601 considerably less than 16/23. What this
indicates is that the silver ions tend to occupy vertices of low
degree, since, if the distribution were random, the average
vertex degree of an occupied site

W@ =3 4o,

i=1

where d; is the individual vertex degree, should be 74/23 =
3.22, while the actual value is only 2.78.

This observation was confirmed by a detailed examina-
tion of the occupancies. In terms of the automorphism of the
graph, there are four distinct vertex types, labeled A, B, C,
and D in Fig. 2. Their degrees and average occupancies are
given in Table 1.

The next step was to compile a list of those arrangements
of occupied vertices such that no adjacent vertices are occu-
pied (i.e., there are no paths between occupied vertices of
length 1). The approach used applied the distance matrix D,

TABLE 1
Average Site Occupancies Observed, and Predicted by Equally
Weighted Averages over Arrangements, by Vertex Type

Average Average of Average of
occupancy 1137 1667829
Vertex type  Degree observed arrangements  arrangements
A 4 0.064 0.389 0.396
B 4 0.092 0.139 0.138
C 3 0.425 0.371 0.369
D 2 0.805 0.646 0.653
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which may be generated by standard means, in which the
incidence matrix is first converted into an adjacency matrix
A. (If we then construct successive powers of the adjacency
matrix, the distance matrix element D;; is given by n,
where n is the lowest power p for which (A4”);; is nonzero,
while the actual value of (4");; is the number of independent
paths of length D;;). The arrangements were then generated
as sequences of site numbers using 8 nested loops, where
the latest potential addition to a growing sequence was
rejected if its graph distance to any earlier element was 1.
This approach allowed the simultaneous calculation
of the distribution of graph distances 2 and 3 for each
arrangement, i.e., the numbers n,, and nj;, applied in the
next section.

DESCRIPTION OF THE STATISTICAL MODEL

The model assumes that the internal energy of the crystal
at finite temperature includes a contribution from the ar-
rangement of the silver ions within the tetrahedra. We
approximate the complete arrangement of silver ions in the
crystal using arrangements of 8 silver ions among the 23
vertices of the graph. The energy of the kth such arrange-
ment may be assumed to be

22 23 23
Ek = Z Z (82/47T80Krij) + Z &y
i=1j=i+1 i=1

where the first sum is the Coulomb energy taken over the
pairs of occupied sites in the arrangement, and the second
sum, over the occupied sites, is the site-specific contribution
due to such effects as distortion of the iodide tetrahedra, the
position of the site relative to the morphiolinium ion, and
the change distribution in neighboring columns. Here K is
the relative permittivity of the medium.

In graph theory terms we can associate the individual
distances r;; within the columns with a minimum integer
path length p = 1,2, 3,.... Further, if we truncate the calcu-
lation so that at most only distances between each site and
the physically nearest equivalent site of another type are
considered, the relevant path lengths are simply the graph
distances between the sites. Then

22 23 23
E, = (€*4neoK) Y. Y (nafrd + Y e
i=1j=i+1 i=1

where ny, is the number of occurrences of graph distance d in
the kth arrangement.

Now the total number of arrangements of 8 indistinguish-
able Ag* ions on the 23 sites is 490,314. However, if we
eliminate those high energy arrangements which have near-
est neighbor (d = 1) interactions, we find that there are only
1137 arrangements to be considered. As a further simplifica-

tion, the Coulomb energies associated with d =2 and d = 3
can now be written on the basis of bringing the ions together
from the maximum graph distance of 4, i.e., as

Ef = (e?/4neoK)(1)r; — 1/ry) i =23

and the energy of the kth arrangement as
Ep = nyukE5 + nyES + Vie,

V., being the vector of site occupancies in the kth arrange-
ment, ¢ that of the site-specific energy terms, and the nota-
tion v' indicates the transpose of the vector v.

Using statistical mechanics, we may write the probability
of the kth arrangement as

1137
D = e*Ek/Rl/ Z o~ E/RT
k=1

from which we may compute the site occupancies

1137 1137 1137

g = Z »V, = z v, e—Ek/RT/ Z o~ EWRT
k=1 k=1 k=1

To have the experimental data in a suitable form for com-
parison, the occupancies observed by Xie and Geller were
made to sum to 8 Ag* by assigning the missing electron
density (0.027 Ag™ or 1.3 electrons per “empty” site) equally
among these remaining sites. This amount of electron den-
sity is similar to a hydrogen atom, and it would be reason-
able to expect it to be undetectable experimentally in the
presence of the iodine atoms, as were the hydrogen atoms in
the organic cation.

The measured occupancies were then fitted to the model,
minimizing the function

23

Y wilo; — q)* + ES/o(e).

i=1

The weights assigned to observations were of the 1/¢?
type, using the X-ray e.s.d.’s where available, the slightly
larger value of ¢ = 0.010 for other “partially occupied” sites,
and ¢ =0.027 (i.e, equal to the assigned occupancy)
for the “empty” sites. The additional term in the function
minimized was included to ensure that the Coulomb repul-
sion contributions was properly so ascribed and that their
effect was not taken up by arbitrary variations in the site-
specific terms. In it the quantity o(e) is the estimated stan-
dard deviation of the site-specific terms relative to their
mean, i.c.,

a’(e) = ) (& — {&)?/22.
=1
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SIMULATION OF THE CONDUCTION PROCESS

Xie and Geller associated the higher activation energy for
conduction in this system with a reduced number of path-
ways available for silver ion flow in the one-dimensional
system. In fact, as noted above, movement of silver ions
from one icosahedron to the next is restricted to four paths,
the one directly through the throat AA, and those via the
collar tetrahedra D. To determine whether such a flow was
possible without incurring nearest neighbor interactions,
the process was simulated in the following manner. Each
step was considered to consist of the hop of a silver ion from
an occupied vertex i to an adjacent (naturally unoccupied)
vertex j, such that no nearest neighbor interactions are
produced, i.e., in terms of the occupancy vectors V

Vk _)Vm

such that their difference

and
VamAaVem = 0 for all distinct a, b

(i.e., V,, is one of the 1137 arrangements discussed above).

In the simulation, the probabilities of any particular hop
i —j occuring next was biased to represent a field applied
along the column direction, but was otherwise random. The
resulting positions of the silver ions were followed as a com-
puter display.

RESULTS

The results show it is clearly possible to derive a set of site
occupancies for the silver ions which totally avoid nearest
neighbor interactions and which conform to the other cle-
ments of the model. The final value of the sum

(S

3

wi(o; — Qi)2
1

i

was 1.6; since the number of variables equal the number of
observations, this should have a value zero if the model were
capable of fitting the observations exactly. On the other
hand, the observed value is much less than the value of 23
which would correspond to the errors in the X-ray results,
meaning that such a precise fit to the observed data is
unwarranted experimentally.

However, the results show that the nearest neighbor effect
by itself is insufficient to explain the extent of the variation
of occupancy with vertex type (compare columns 3 and 4 of
Table 1), or why the lowest average occupancies are asso-
ciated with the “central” vertices B and especially A, which
latter have the highest number of second neighbors. The
model achieves agreement on these features through the
Coulomb terms, which comprise pairwise interactions of
403 kJmol~! for second neighbor silver ion sites and of
0.89 for third neighbors; by comparison a(g), which indi-
cates the variance in energy between individual sites, was
found to be 2.19 kJmol '. Since the number of second
neighbors n,, varies between 9 and 16 for the different
arrangements, the silver ion—silver ion Coulomb terms effec-
tively dominate their relative energies. The observed and
calculated occupancies for the individual sites are given in
Table 2, along with the site-specific energy contributions
calculated.

The Coulomb terms applied correspond to an effective
relative permittivity K of 50.4 or a polarizability of 17.2 x
107*°J7* C?m? A calculation based on the electronic
polarizability of iodide ions and their concentration in the
columns of 1.45x10*®m™* gives a polarizability of
7.3x107%°J71 C? m?, but there are distortion polarization
effects to be considered also.

Figure 4 shows the distribution of these energies relative
to the ground state of the system, correctly identified by Xie

TABLE 2
Observed and Calculated Site Occupancies and Site-Specific
Energy Terms

Site o o(0) q ¢ (kJ mol™ 1)
1 0.285 0.008 0.287 2.09
2 0.627 0.007 0.630 —0.73
3 0.027 0.027 0.037 0.73
4 0.027 0.027 0.025 1.83
5 0.288 0.010 0.284 — 356
6 0.027 0.027 0.032 1.37
7 0.621 0.007 0.621 —031
8 0.154 0.007 0.155 —327
9 0.100 0.010 0.100 —0.62

10 0.027 0.027 0.029 0.74

11 0.271 0.007 0.274 114

12 0.289 0.007 0.295 2.36

13 0.027 0.027 0.034 1.74

14 0.278 0.006 0.280 241

15 0.552 0.008 0.557 0.69

16 0.945 0.007 0.945 — 496

17 0.027 0.027 0.019 0.95

18 0.846 0.007 0.844 — 3.66

19 0.132 0.008 0.129 —1.76

20 0.027 0.027 0.010 —203

21 0.786 0.007 0.787 1.91

22 0.693 0.010 0.689 1.85

23 0.937 0.008 0.937 1.13
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FIG. 4. The energy distribution of the 1137 arrangements. Solid line,
equally weighted; dashed line, weighted by contribution to the partition
function.

and Geller as that arrangement where the 8 sites with
observed occupancies greater than 0.5 are all occupied.
However, Fig. 4 also illustrates the relative contributions
from arrangements of different energies to the partition
function; it shows that the ground state arrangement is
adopted only one-tenth of the time, and the hundred or so
arrangements with energies within 10 kJ mol™' of the
ground state make significant contributions.

It is the large number of these low-lying arrangements
that confer stability to the disordered system. Taking the
relation

A=U-TS§,

the contribution to the Helmholtz energy due to the silver
ion arrangement, as calculated from the partition function,
is —5.85kJmol ! based on two formula units or one
icosahedron. This value is made up of the weighted average
arrangement energy, U = 4.79 kJ mol ™!, more than doubly
compensated for by a favorable entropy term, correspond-
ing to S = 35.7JK "' mol ™! assuming T = 300 K. Table 3
compares the distribution of graph distances calculated at
300 K to those in the ground state and in equally weighted
averages over the 1137 selected and 490,314 total possible
arrangements. The actual distribution is clearly nonrandom
in favoring greater graph distances.

As for the simulation, it showed a bottleneck will occur in
the flow of silver ions between adjacent iodide icosahedra
unless some of them are allowed to temporarily occupy
higher energy sites and arrangements, and it may well be
that the additional activation energy required in this system
is just such a configurational contribution.

TABLE 3
Distribution of Graph Distances between Sites
in Various Models

Graph distance

Distribution in 1 2 3¢ 4 Total®
Ground state 0 9 13 6 28
Average over occupied

arrangements at 300 K 0 994 1351 491 28.36
Equally weighted average

over 1137 arrangements 0 1212 14.02  3.58 29.72
Equally weighted average

over total arrangements 4.09 9.63 1394 232 29.99

“Any excess in the total over 28 corresponds to the extra contribution
when there are two independent length 3 paths between the same vertices.

APPENDIX

The representative nature of the distribution based on the
1137 arrangements chosen was tested in the following way.
Using the same method as in the Analysis of the Silver Ion
Distribution section above, the set of arrangements of 8 sil-
ver ions over 23 sites, with no nearest neighbors, was found
for an isolated repeat unit of the structure. The underlying
graph required here is formed by cutting the previous 23-
vertex, 37-edge graph so that it no longer loops back on
itself; i.e., it becomes planar. There are several ways of doing
this, but the simplest, which also produces the smallest
number of arrangements, is by making the four cuts in-
dicated in Fig. 2. We can then combine the resulting 3369
arrangements in compatible pairs statistically, since the
behavior at the joins depends solely on the occupancies of
the cut vertices 4, 8, 9, 10, 13, 21, 22, and 23, to give
arrangements over the 46-vertex, 74-edge graph which rep-
resents two repeat units alternating indefinately. If we also
consider making such combinations using cuts above the
collar as well as below and eliminate the duplicates, we
produce in all 1,667,829 arrangements. Even this is not quite
a complete set of those arrangements with no nearest neigh-
bors occupied over the 46-vertex graph, since it includes
only some of those arrangements where one icosahedron
holds two or more silver ions more than the other. However,
it does allow us to test whether the 1137 self-compatible
arrangements produce a distribution representative of mak-
ing all possible combinations, and the comparison shown in
Table 1 confirms this is so.

REFERENCES

. J. S. Rutherford, Acta Crystallogr. B 46, 289 (1990).

. J. S. Rutherford, Trans. Am. Crystallogr. Assoc. 27, 315 (1991).

. Xle Sishen and S. Geller, J. Solid State Chem. 68, 73 (1987)

. N. Trinajstic, “Chemical Graph Theoy,” 2nd ed., CRC Press, Boca
Raton, FL, 1992.

AW N



	TABLES
	TABLE 1
	TABLE 2
	TABLE 3

	FIGURES
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4

	INTRODUCTION
	GEOMETRIC DESCRIPTION OF THE STRUCTURE
	ANALYSIS OF THE SILVER ION DISTRIBUTION
	DESCRIPTION OF THE STATISTICAL MODEL
	SIMULATION OF THE CONDUCTION PROCESS
	RESULTS
	APPENDIX
	REFERENCES

